M. J. Fishman

REPORT OF ANALYTICAL EVALUATION PROGRAM STANDARD WATER SAMPLES NUMBERS 1 and 2

> Calcium, Magnesium Sodium, Potassium Chloride, Sulfate

U. S. GEOLOGICAL SURVEY WATER RESOURCES DIVISION Quality of Water Branch Denver, Colorado 1962

CONTENTS

			Page
Purpose and plan			. 3
Preparation of the samples		·	
Participating laboratories		*, 1 4	. 6
Reported results: calcium and magnesium	lin.	e y	• 7
Reported results: sodium and potassium		e e	. 15
Reported results: chloride	-	• e	- 23
Reported results: sulfate			. 27
Conclusions and recommendations		a a	. 31

4) Each sample in a series will be analyzed for two or more constituents as specified.

5) Sufficient sample will be provided to allow for rinsing of equipment and determination of each constituent in duplicate. Standard forms will be provided for reporting the results of the individual determinations and their average.

6) The analysis of each series should normally be completed and a report submitted within 15 days of receipt of the samples.

7) Each participating laboratory will be identified only by an assigned code number.

The first series of two standard water samples were prepared and distributed in September 1962. This report summarizes and evaluates the data submitted for these two samples identified as Standard Water Samples Nos. 1 and 2. The determinations made on these two samples included calcium, magnesium, sodium, potassium, chloride, and sulfate.

PREPARATION OF THE SAMPLES

Each sample was prepared from accurately weighed amounts of analytical reagent quality chemicals dissolved in an accurately measured volume of distilled water which had been further purified by passage through a mixed-bed exchanger. When necessary to affect solution of the reagent, a slight excess of reagent quality nitric acid was added to the sample.

The following compounds were used for the preparation of the samples:

CaCO ₃	KC1
MgSO4 ·7H2 O	NaHCO3
NaC1	

Concentrated stock solutions were prepared to contain the following concentrations of the substances indicated:

Stock	<u>solution 1A</u> Calcium (Ca).		0	•	1,932	ppm
<u>Stock</u>	solution 1B Magnesium (Mg) Sodium (Na) . Potassium (K) Chloride (C1) Sulfate (SO ₄)	•	•	•	. 320 . 320 784	ppm ppm ppm
<u>Stock</u>	<u>solution 2A</u> Calcium (Ca).				. 640	ppm

Stock solution 2B

Magnesium (Mg)	•	•	•		120	ppm
Sodium (Na)			•			860	ppm
Potassium (K)	•			•	85	ppm
Chloride (C		•		•	•	328	ppm
Sulfate (SC	$(4)_{4}$	•	•	•	×	472	ppm

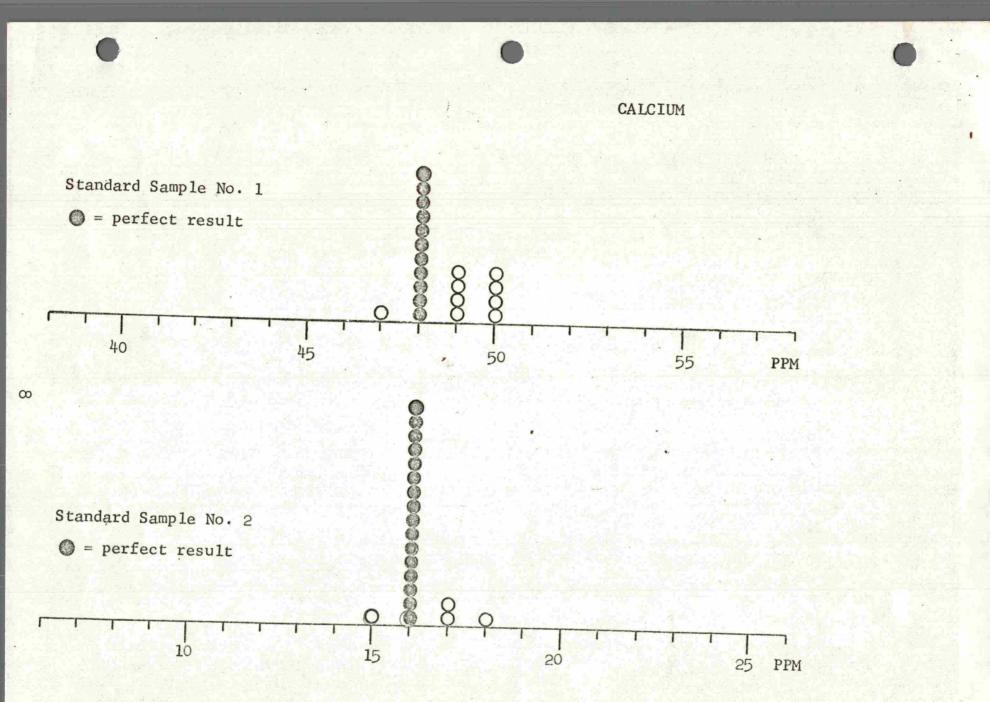
Individual 1-liter samples were prepared by taking 25.0 ml each of solutions 1A and A and diluting to exactly 1 liter. This comprised Standard Water Sample No. 1. Standard Water Sample No. 2 was prepared in a similar way by diluting 25.0-ml portions of stock solutions Nos. 2A and 2B to exactly 1 liter. The calculated concentrations of the two samples thus prepared were as follows:

					Standard Wat	er Sample
					No. 1	No. 2
Calcium (Ca) .	•		•	•	48 ppm	16 ppm
Magnesium (Mg)	•				15	3.0
Sodium (Na)	•	•	•	•	8.0	22
Potassium (K).	•	•			8.0	2.1
Chloride (C1).					20	8.2
Sulfate SO_4).	•	÷	•	•	59	12

After preparation, each sample was analyzed in duplicate at 5 different times over a period of about six weeks. The results of these analyses are given in the following table. Neither sample showed any change in the concentration of the substances determined over the period of storage.

> Analysis by Preparations Laba/ Standard Water Sample No. 1 No. 2 Calcium (Ca) 49 16 ppm ppm 15 8.4 Magnesium (Mg) . . 3.4 Sodium (Na). . . 22 Potassium (K). . . 7.11.7 Chloride (C1). 22 9.5 Sulfate (SO_4) . 59 13

a/ Each result represents the average of 5 duplicate determinations made over a period of about 6 weeks.

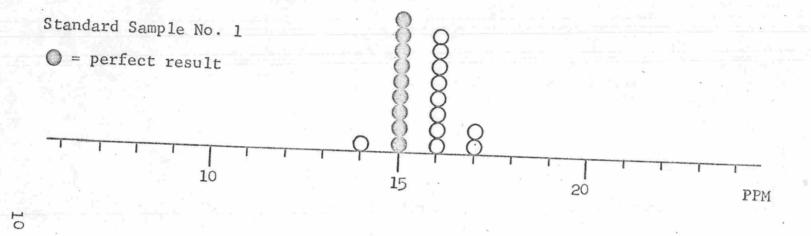

PARTICIPATING LABORATORIES

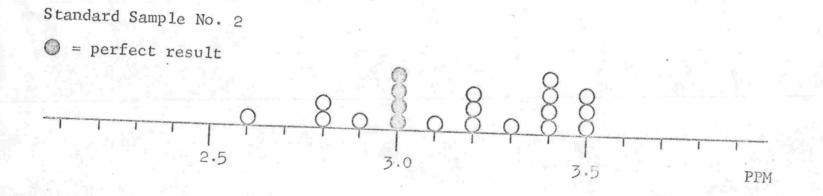
Alabama, Tuscaloosa Alaska, Palmer Arizona, Tucson Arizona, Yuma Arkansas, Little Rock California, Menlo Park California, Sacramento Colorado, Denver District of Columbia Florida, Ocala Louisiana, Baton Rouge Nebraska, Lincoln New Mexico, Albuquerque New York, Albany North Carolina, Raleigh Ohio, Columbus Oklahoma, Oklahoma City Oregon, Portland Pennsylvania, Philadelphia Puerto Rico, San Juan Texas, Austin Utah, Salt Lake City Wyoming, Worland REPORTED RESULTS: CALCIUM (ppm)

	Standar	d Sample	No 1	I Sto	ndored	Com 1	27
Code				1	nuard	Sample	No. 2
No.	(1) (2) (3)	Avge.	(1)	(2)	(3)	Avge.
101	48 48	-	48	16	16		16
102	48 48	-	48	16	16		16
103	48 48		48	16	16		16
104	47 48		47.5	16	16		16
105	48.6 48	.4	48	16	16		16
106	48 48		48	16	15		15 <u>b</u> /
107	47 47		47	16	16	-	16
108		-	- 1				
109	22 22	-	22 a /	16	16	i sente	16
110	48 48		48	16	16		16
111	47.5 48		48	16	16	1421	16
112	49 49		49	16	16	1.44	16
113	48 48		48	17	16	1 mm - 1	16
114						1	
115	50 50	48	49	16	16	-	16
116	49 49		49	16	16		16
117	50 49		50	16	16	-	16
118	48 47		48	15	15		15
119	50 50		50	18	17		18
120	49 51		50	17	17		17
121	50 49		50	16	16	-	16
122	48 48		48	16	1 6	(L. 1)	16
123	48 50		49	16	18	111	17

<u>a</u>/ Calculation error; later corrected by participating laboratory to 50 ppm.

 \underline{b} / Should have been reported as 16 ppm.




REPORTED RESULTS: MAGNESIUM (ppm)

	Stan	dard S	ample	No. 1	Star	ndard S	ample	No. 2
Code No.	(1)	(2)	(3)	Avge.	(1)	(2)	(3)	Avge.
101	1 5	15		15	3.0	3.0		3.0
102	15	15		15	3.4	3.5	77	3.4
103	1 6	16		16	3.2	3.4		3.3
1 04				1 6				2.9
105	1 6.4	1 6.4		1 6	3.23	3.28	1	3.2
106	1 6	1 6		16	3.6	3.5		3.5
107	1 6	16		1 6	3.1	3.1		3.1
108				,		'	· ••]	/
109	32	32	`	32 <u>a</u> /	18	18		18 <u>b</u> /
110	15	15		15	2.7	2.4		2.6
111	16.5	16.9		17	3.4	3.4		3.4
112	15	15		15	3.4	3.4		3.4
113	17	17		17	3.2	3.8		3.5
11 4	1 - <u>1</u> - 1							
115	16	16	15	16	3.5	3.3		3.4
116	15	15		15	2.9	3.2		3.0
117	14	15		1 4	3.2	3.2		3.2
118	16	15		16	3.5	3.5	-	3.5
119	15	15		15	2.7	2.9		2.8
120	16	14		15	3.3	2.8		3.0
121	1 5	15		15	2.7	2.8		2.8
122	16	16		16	3.2	3.2		3.2
123	15	15		1 5	2.8	3.2		3.0

a/ Calculation error; later corrected to 15 ppm.

 \underline{b} / Calculation error; later corrected to 3.4 ppm.

Methods used: Calcium (Ca) and Magnesium (Mg)

Lab.	Calcium (Ca)	Modifications	Magnesium (Mg)	Modifications
101	D:8a-1	None	D:17a-1; D:23a-1	None
102	н	н	Titan yellow	и –
103		Na ₂ EDTA: 1 m1≈1.0 mg CaCO ₃	D:17a-1; D:23a-1	
104		None	- u u	
105	(not designated)		(not designated)	· · · ·
106	D:8a-1	None	D:17a-1; D:23a-3	None
107	. U	Na ₂ EDTA:	D: 17a-1; D:28a-1	Eriochrome Black T dry
	Carlo grad	1 m1≈1.00 mg CaCO ₃ ≈ 0.40 mg Ca		mixture; Na ₂ EDTA, 1.00 ml \approx 1.00 mg CaCO ₃ \approx 0.243 mg Mg
108	(not analyzed)		(not analyzed)	· · · · ·
109	D:8a-1	None	D:17a-1; D:23a-1	None
110	П		и п.:	н, н
111	11	н н.	. u . u	u .
112	п	No NaCN added.		Porcelain dish used.
		Na ₂ EDTA: 1.00 m1≈ 0.40 mg Ca		<pre>1 ml conc. NH₄ OH 1 ml 3% NH₂ OH·HC1 1 ml Eriochrome Black T per 50 ml sample Na₂ EDTA: 1.00 ml≈ 1 mg CaCO₃</pre>
113	D:8a-2	Samples hand-stirred;	. š. n n	None
		reaction viewed through illumination through the beaker.		
114	(not analyzed)		(not analyzed)	
115	(not designated)		(not designated)	승규는 가지 않는 것이?
116	D:8a-1	None	D:17a-1; D:23a-1	None

Methods used: Calcium (Ca) and Magnesium (Mg) (continued)

Lab.	Calcium (Ca)	Modifications	Magnesium	n (Mg)	Modifications
117	D:8a-1	Porcelain evap. dish; 50-ml buret; NH ₂ OH·HCl, NaOH, NaCN added in order (1.5 ml ea.) with dropping pipet; murexide added with 0.2 g cup; no blank correction.	D:17a-1; D:	23 a-1	NH ₂ OH·HC1, NH ₄ OH, NaC added in order (1.5 m ea.) with dropping pipet; 10-m1 buret us for hardness titration
118	"	Porcelain dish used; hand stirring; no blank correction.		11	None
119		Hach Calver II indica- tor (contains NaCN) added after 1.0 ml of 85% KOH sol'n; NH ₂ OH· HCl is not added; Na ₂ EDTA: 1.0 ml \approx 1.0 mg CaCO ₃ (0.400 mg Ca).		n	Hach Univer.I indica- tor; NH ₂ OH·HC1, NaCN, K ₄ Fe(CN) ₆ are not use
120	н	No blank correction.	11	U.	None
121	•	None		0.000	n spilles i statistica prima
122	"	NH ₂ OH and NaCN used <u>only</u> when significant concentrations of heavy metals present.		• n , []	
123	WSP 54 (?)		WSP 54 (?)		
			1		1.5. A state of the state of

ERRORS, CALCIUM DETERMINATION

Sta	ndard Water Sam	ple No. 1,	48 pj	om
Error <u>(absolute)</u>	Number o: laborator: reporting	ies 20	0 labo	ntage of pratories rtinga/
0 ppm ±1 " ±2 "	11 16 20		55 80 1 00	percent

<u>a</u>/ One laboratory reported 22 ppm, later corrected to 50 ppm; this result not included.

Standard	Water Sample No.	2, 16 ppm
Error (absolute)	Number of laboratories reporting	Percentage of 20 laboratories reporting
O ppm ±1 " ±2 "	16 20 21	76 percent 95 " 100 "

The data show that the most probable value for the concentration of calcium in Sample No. 1 is 48 ppm, and in Sample No. 2, 16 ppm. The errors in this determination are positive, that is, higher than true values are reported. Two of the four laboratories which reported the highest (+2 ppm) deviation for the 48 ppm sample also reported higher than the true value for Sample No. 2. Three laboratories indicated that no blank correction is made; of these, two reported high values for calcium in No. 1 and one a high value for Sample No. 2. Perhaps other laboratories do not apply a blank correction but neglected to indicate this on the report. The blank correction, however, would be less significant at calcium concentrations of the order of 48 ppm, where, in fact, the greater deviations occurred.

The calcium determination is accurate within reasonable limits of routine analyses.

ERRORS, MAGNESIUM DETERMINATION

Standard	Water Sample No.	1, 15 ppm
Error (absolute)	Number of laboratories reporting	Percentage of 20 laboratories reporting
0 ppm ±1 " ±2 "	9 18 20 <u>a</u> /	45 percent 90 " 100 "

<u>a</u>/ One laboratory reported 32 ppm, later changed to 15 ppm after correcting for a calculation error. This result was not included in the evaluation.

Standar	d Water Sample No.	2, 3.0 ppm
Error (absolute)	Number of laboratories reporting	Percentage of 20 laboratories reporting
0.0 ppm ±0.1 " ±0.2 " ±0.3 " ±0.4 "	$4 \\ 6 \\ 11 \\ 12 \\ 17 $	20 percent 30 " 55 " 60 " 85 "

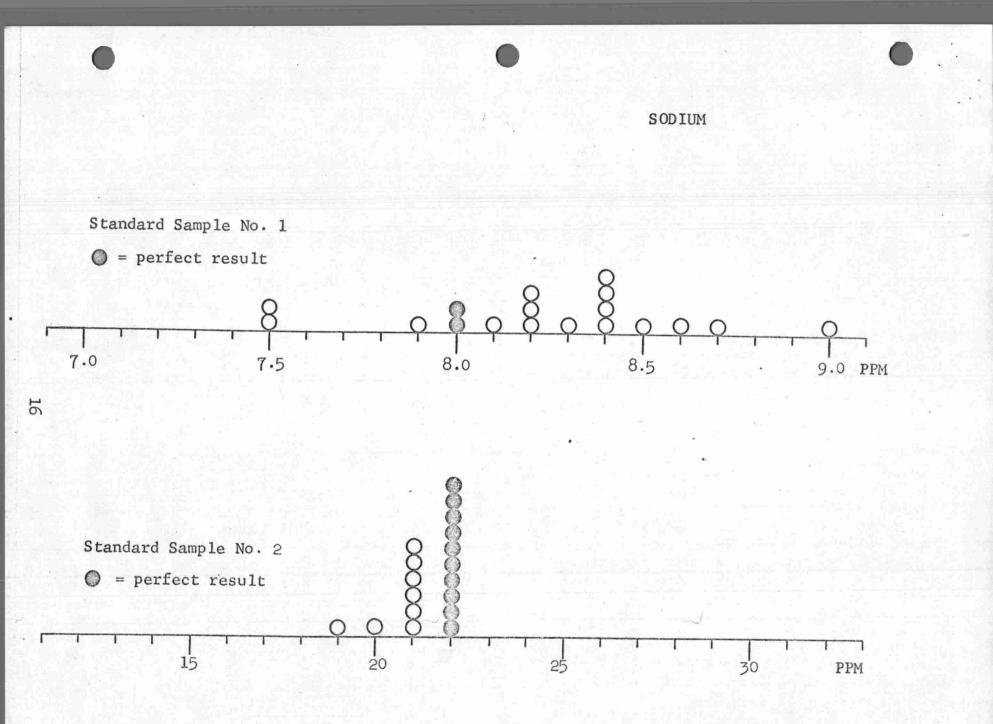
The reported results for magnesium are generally somewhat less satisfactory than those for calcium. This is to be expected in view of the fact that magnesium is determined by difference, except for one laboratory which determines magnesium by a direct photometric method.

100

20

±0.5

Evaluation of the data shows that the methods used are accurate to within ± 1 ppm at the 15 ppm concentration level and that there is no justification for reporting results to the nearest 0.1 ppm at concentration levels below 10 ppm. If results for magnesium concentrations below 10 ppm are to be reported to the nearest 0.1 ppm either (a) the technique must be improved to demonstrate this accuracy, or (b) the results so reported must be clearly stated as having an accuracy of ± 0.5 ppm.


The data also indicate the possibility of a bias in favor of reporting even-numbered values for the analytical data. Thus, for calcium the calculated values quite by chance turned out to be even-numbered values. This appears to have been a fortunate choice since most of the values reported by the participating laboratories coincide with the calculated value. However, the number of laboratories reporting 50 ppm appears to be unrealistically large in comparison with the number of 49 ppm values reported. The tendency to report even-numbered values biases the analysis in favor of these values.

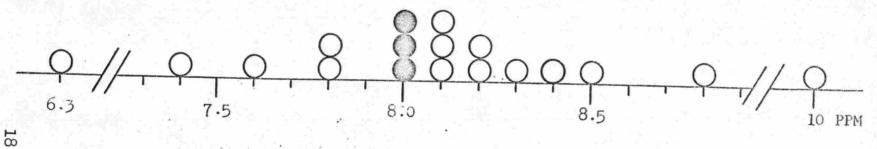
This is even more apparent in the case of the reported values for magnesium. For Sample No. 1, the calculated value happened to be an odd-numbered value (15 ppm). However, almost as many laboratories reported 16 ppm, again a possible indication of prejudice in favor of an even-numbered value. Seventy percent of all values reported for magnesium in Sample No. 2 were even-numbered values.

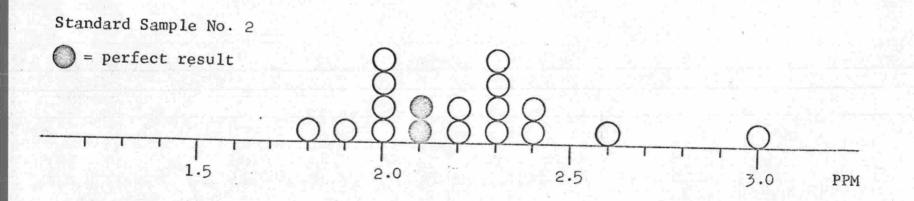
REPORTED RESULTS: SODIUM (ppm)

	Sta	indard	Sample	No. 1	Sta	ndard	Sample	No. 2
Code No.	(1)	(2)	(3)	Avge.	(1)	(2)	(3)	Avge.
101	8.5	8.3		8.4	22	21		22
102	8.1	8.1		8.1	21	21		21
103	8.9	9.1	, <u>-</u>	9.0	22	22		22
104		8		1221	1			
105	7.5	7.5		7.5	19	19		19
106	8.2	8.4		8.3	21	.21		21
107	8.0	7.9	14 - C	8.0	21	21	영니고요?	21
108		244 J		<u>11-11</u>	1.20	- 11 s	1 <u>1</u> 1 1 1	
109						- 12 -		
110	8.7	8.7		8.7	22	22	1.12	22
111	8.4	8.4		8.4	22	22		22
112	8.2	8.2		8.2	22	22	1219	22
113	7.5	7.5		7.5	21	21		21
114		194 - C		-22		12.1	622	
115	7.8	7.9	7.9	7.9	20	21	20	20
116								
117	8.4	8.4		8.4	22	22	신물	22
118	8.7	8.6		8.6	22	22		22
119	8.3	8.6		8.4	22	22	12	22
120	8.0	8.0		8.0	22	22	1200	22
121	8.5	8.5		8.5	21	21		21
122	8.2	8.3	t e e la	8.2	21	21	- 19 L	21
123	8.2	8.2	i d e su c	8.2	22	22	2. P	21

Median = 8.25

REPORTED RESULTS: POTASSIUM (ppm)


	Sta	ndard	Samp le	No. 1	Star	ndard	Sample	No. 2
Code No.	(1)	(2)	(3)	Avge.	(1)	(2)	(3)	
101	6.3	6.3		6.3	1.8	1.8		1.8
102	7.9	8.0		8.0	2.3	2.3	, juli i	2.3
103	8.2	8.4		8.3	2.0	2.1	ع في ا	2.0
104						<u> </u>		
105	8.4	8.4		8.4	2.6	2.6		2.6
106	7.8	7.5		7.6	2.0	2.2		2.1
107	7.8	7.9		7.8	2.2	2.2	<u>1</u> 2	2.2
108		1 <u>1</u> 4					1 H H H	
109				,				
110	8.0	8.0		8.0	2.1	2.1		2.1
111	10	10		10	3.0	3.0		3.0
112	8.8	8.8		8.8	2.4	2.4		2.4
113	8.1	8.1		8.1	2.2	2.2	-1	2.2
114	11							
115	8.1	8.1	8.1	8.1	2.2	1.8	2.0	2.0
116	lles :					122	111	
117	8.2	8.3		8.2	2.3	2.4	14	2.4
118	8.2	8.0		8.1	2.4	2.2		2.3
119	7.4	7.5		7.4	1.9	1.9	-	1.9
120	7.9	7.8		7.8	2.4	2.2	-	2.3
121	8.0	8.0	`	8.0	2.0	2.0		2.0
122	8.2	8.2		8.2	2.0	2.0		2.0
123	8.5	8.5		8.5	2.3	2.3	44	2.3



POTASSIUM

Standard Sample No. 1

O = perfect result

Methods used: Sodium (Na) and Potassium (K)

Lab.	Sodium (Na)	Modifications	Potassium (K)	Modifications
101	Flame photometer	Beckman Model 41; calibrated with std. solutions of Na + K; m.e. read directly.	Flame photometer	Beckman Model 41; calibrated with std. solutions of Na + K; m.e. read directly.
102	Flame photometer; WSP 1454, 35a-1	Perkin-Elmer Model 52-C.	Flame photometer; WSP 1454, 32a-1	Perkin-Elmer Model 52-C.
103	Flame photometer	Beckman Model DU with flame attachment; table prep'd from std. curves: 0-25 ppm Na and 25-100 ppm.	Flame photometer	Beckman Model DU with flame attachment; table prep'd from series of standard curves to correct for sodium.
1 04				
105				
106	Flame photometer: WSP 1454, D:35a-1		Flame photometer; WSP 1454, D:32a-1	
107	Flame photometer	Beckman Model DU with photomultiplier and flame attachments; oxygen-hydrogen flame; two ranges: 0-10 ppm and 10-50 ppm; brack- eting between standards % T- readings converted to antilogs for compu- tations; 589 mµ.	s; d -	Beckman DU with photo- multiplier and flame attachments; oxygen- hydrogen flame; 768 mµ.
108	Not determined	그는 이 가지 위해 가지 않는	Not determined	
109	н н	이 부모님이 이 이 이 가지?	11 11	
110	Flame photometer	Beckman 4100 direct reading flame photo- meter.	Flame photometer	Beckman 4100 direct reading flame photo- meter.
111	Flame photometer; WSP 1454, D:35a-1		Flame photometer; WSP 1454, D:32a-1	

Methods used: Sodium (Na) and Potassium (K) (continued)

Lab.	Sodium (Na)	Modifications	Potassium (K)	Modifications
112	Flame photometer	Beckman DU; 589 mµ; std. curve prep'd from NaCl solutions con- taining 2, 4, and 6 ppm.	Flame photometer	Beckman DU; sample diluted 1:1 with 1,000 ppm sodium; 768 mµ.
113	Flame photometer	Beckman DU; photomul- tiplier and flame attachments; oxygen- hydrogen flame.	Flame photometer	Beckman DU (see Na method).
114	Not determined		Not determined	
115				
116	Not determined		Not determined	14 1 1gi - 2 1gi
117	Flame photometer	Beckman Model B; oxygen-acetylene flame; standard curves for 0-10 ppm, 10-25 ppm, and 25-50 ppm.	Flame photometer	5 ml of 2,000 ppm Na std. added to each sample (25 ml) aliquot.
118	Flame photometer; WSP 1454, D:35a-1		Flame photometer; WSP 1454, D:32a-1	
119	Flame photometer; WSP 1454	Beckman Model DU flame spectrophotometer; bracketing system; oxygen-acetylene flame	WSP 1 454	Beckman DU flame spec- trophotometer; each sample brought to 1,000 ppm Na by adding NaCl solution (1 ml=25 mg Na); bracketing system.
120	Flame photometer	Perkin-Elmer Model 52-C, propane flame; internal standard method using Li ₂ SO ₄ solution.	Flame photometer	(See sodium determination)
121	Flame photometer; WSP 1454, D:35a-1		Flame photometer; WSP 1454, D:32a-1	
122	Flame photometer; WSP 1454, D:35a-1	Beckman Model B; oxy- gen-acetylene flame; bracketing system.	Flame photometer; WSP 1454, D:32a-1	Na content of all sample adjusted to 500 ppm wit NaCl soln;bracketing sy
123	WSP 54 (?)		WSP 54 (?)	

ERRORS, SODIUM DETERMINATION

	Standard	Water Sample 1	No. 1, 8.	0 ppm
Erro (absol		Number of laboratories reporting	18 1	centage of aboratories eporting
0.0 ±0.1 ±0.2	ppm ''	2 4		11 percent
±0.2 ±0.3 ±0.4	11 11	8 12		39 " 44 " 67 "
±0.5 ±0.6	11 11	15 16		83 " 89 "
±0.7 ±1.0		17 18	1	94 " 00 "

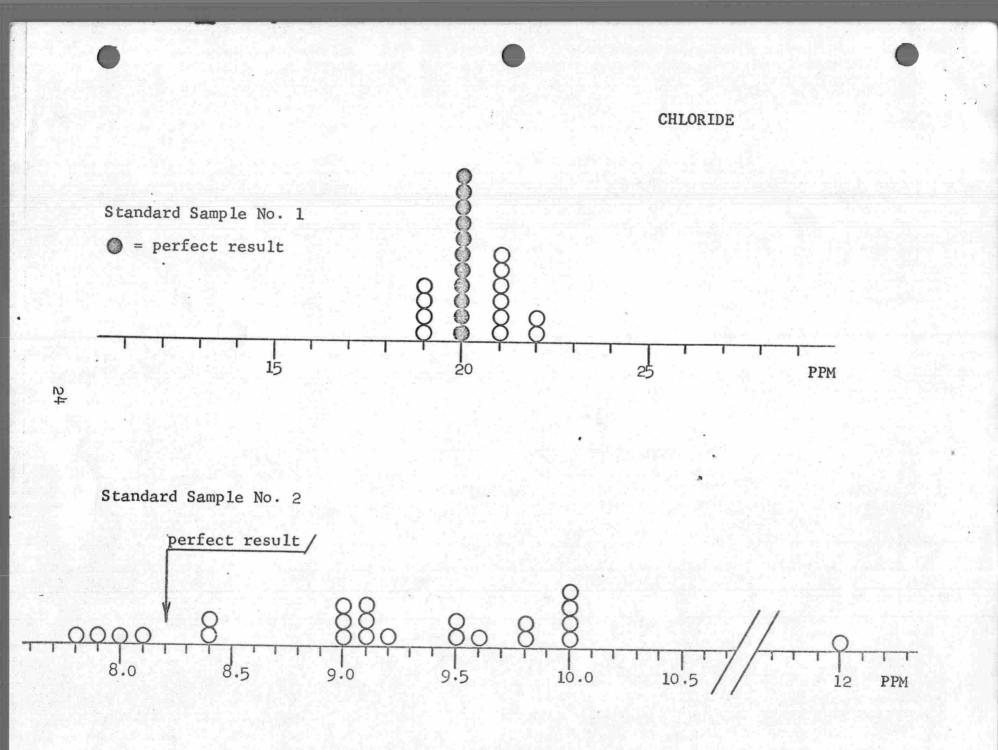
Standar	d Water Sample No	. 2, 22 ppm
Error <u>(absolute)</u>	Number of laboratories <u>reporting</u>	Percentage of 18 laboratories reporting
O ppm ±1	10 16	56 percent
±2 "	17	94 "
±3 "	18	100 "

The sodium determination does not justify reporting values of concentrations of less than 10 ppm to the nearest 0.1 ppm. Values reported for Sample No. 1 which contained 8.0 ppm ranged from 7.5 to 9.0 ppm; the median of all values reported was between 8.2 and 8.3 ppm. Twenty-two percent of the laboratories reported the calculated value ±0.1 ppm. Fifty-six percent of the laboratories reported higher values and only 17 percent reported values less than the calculated value ±0.1 ppm. Sodium values at concentration levels of 10 ppm tend to be high. The method used should be examined carefully to make certain that accuracy is maintained at the lower concentration ranges.

The flame photometric method is satisfactory within ±1 ppm at sodium concentration levels of 22 ppm. Eightynine percent of all laboratories reported within 1 ppm of the correct value.

CONTROL DELEMENTATION					
Standard Water Sample No. 1, 8.0 ppm					
	ror <u>plute)</u>	Number of laboratories reporting	18 labo	ntage of pratories prting	
0.0 ±0.1	ppm	3	17	percent	
±0.2		0 10	33 56		
±0.3	••	ii	61		
±0.4		13	72	11	
±0.5	1.11	14	78	11	
±0.6		15	83		
±0.8		1 6	89		
±2.0	••	18	100	gi in tek	

ERRORS, POTASSIUM DETERMINATION


Standard Water Sample No. 2, 2.1 ppm

Error (absolute)	Number laboratories reporting	Percentage of 18 laboratories reporting
0.0 ppm ±0.1 ±0.2 " ±0.3 "	2 8 13	11 percent 44 " 72 "
±0.5 " ±0.9 "	16 17 18	94 " 100 "

The range of reported values for potassium in Sample No. 1 was excessive, although, in general, the reported values were satisfactory if not within the ± 0.1 ppm accuracy indicated by the method and the reported value. If the accuracy is ± 0.5 ppm for potassium concentrations below 10 ppm, then 78 percent of all labs would have reported acceptable values for potassium in Sample No. 1, and 89 percent acceptable values for Sample No. 2.

REPORTED RESULTS: CHLORIDE (ppm)

	Star	ndard S	Sample	No. 1	Sta	ndard	Sample	No. 2
Code No.	(1)	(2)	(3)	Avge.	(1)	(2)	(3)	Avge.
101	19	19		19	8.0	8.2		8.1
102	20	20	-	20	8.9	9.2		9.0
103	21	21		21	9.2	9.2		9.2
104	22	22		22	11	12		11.5
105	19	19.5		19	9.5	10		9.8
106	20	18		19	8.1	8.0		8.0
107	20	20		20	9.0	9.2	-	9.1
108	21	21		21	10	10		10
109	20	20		20	9.0	9.0		9.0
110	21	20		20	10	10	- 4	10
111	19	19		19	7.8	7.8		7.8
112	21	21		21	9.2	9.0	-	9.1
113	21	21		21	9.5	9.5		9.5
114	20	20	-	20	9.0	9.0		9.0
115	20	20	20	20	1 0	10	9.5	10
116	21	21		21	9.5	9.6	100	9.6
117	22	22	~ -	22	7.8	8.0	-	7.9
118	20	20		20	8.5	8.2	1,044	8.4
119	20	21		20	10	9.5	-	9.8
120	22	20		21	9.4	8.8		9.1
121	20	20		20	1 0	9.0		9.5
122	21	20	-+	20	8.4	8.2	1744	8.3
123	20	21		20	10	10		10

Methods sed: Chloride

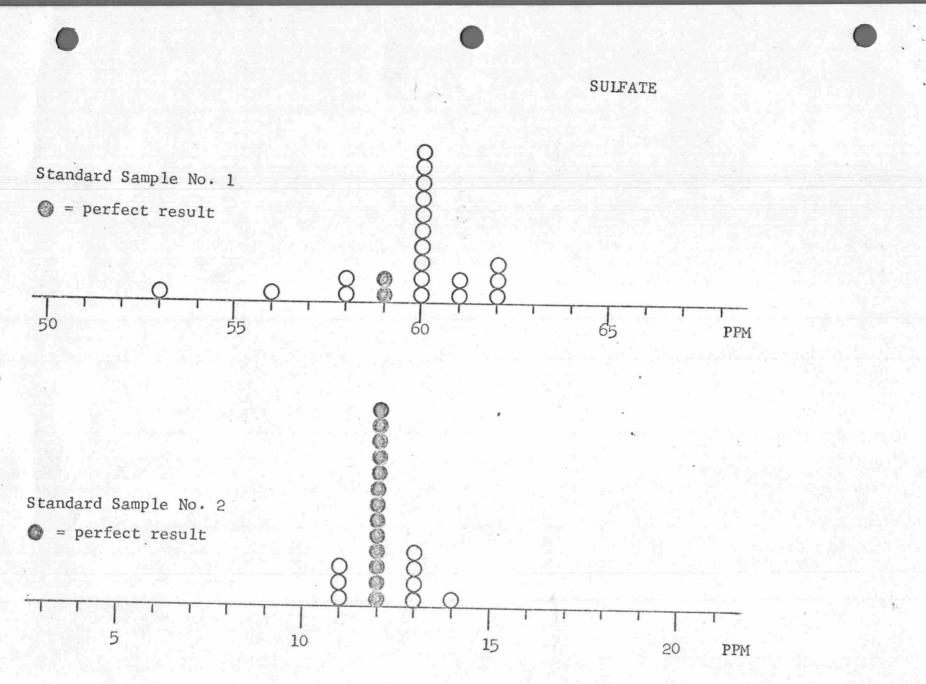
Lab.	Method	Modifications
101	Mohr; WSP 1454, D:10a-1	None
102	и и и	이야 바람이 있는 것은 것을 가지 않는 것으로 가지 않는 것이 있는 것을 통하는 것을 했다.
103	n n n	= ^ · · · · · · · · · · · · · · · · · ·
104	п п п	Yellow light not used; 0.15 ml blank
105	(Method not submitted)	
106	Mohr; WSP 1454, D:10a-1	None
107	n n n	n
108	п и п	ii a shekara a shekar
109	п и -и	11
110		n. 10 (100 (100 (100 (100 (100 (100 (100
111	й и ^с и	н
112	н н <u>й</u>	Blank correction of 0.10 ml
113	Gravimetric; WSP 1454, D:10a-2	None
114	Mohr; WSP 1454, D:10a-1	11
115	(Method not submitted)	
116	Mohr; WSP 1454, D:10a-1	None
117	и и и	6 to 7 drops of $K_2 CrO_4$ indicator used
118	н н н	None
119	н н н	None of significance
120		3 drops of indicator used; a blank correction us
121	н н н	None
122	и и и	U
123	WSP 54 (?)	÷

Standard	Water Sample No	. 1, 20 ppm
Error (absolute)	Number of laboratories reporting	Percentage of 23 laboratories reporting
0 ppm ±1 ±2 "	11 21 23	48 percent 96 " 100 "

ERRORS. CHLORIDE DETERMINATION

S	tandard	Water	Sample	No.	2.	8.2	DDm	

Error (absolute)	Number of laboratories <u>reporting</u>	Percentage of 23 laboratories reporting			
0.0 ppm ±0.1 " ±0.2 " ±0.3 " ±0.4 "	0 1 4 56	0 percent 4 " 17 " 22 " 26 "			
±0.8 " ±0.9 " ±1.0 "	9 12 13	39 " 52 " 57 "			
±1.3 " ±1.6 "	15 18	65 " 78 "			
±1. 8 "	22	96 , "			


The values reported for chloride at a concentration level of 20 ppm were nearly all in agreement with the calculated value ±1 ppm. Less than 10 percent of all results reported exceeded the calculated value by more than 1 ppm and the maximum error was only 2 ppm.

The determination of chloride at a concentration level of 8.2 ppm, however, is quite different. The 23 values reported ranged from 7.8 to 12 ppm. Eighty-three percent of the reported values exceeded the calculated value by 0.2 ppm or more. Because of the wide spread in the results submitted for chloride in this sample, it is evident that with the method used, chloride should not be reported to the nearest 0.1 ppm, even at concentrations of less than 1.0 ppm. The statement is made in WSP 1454, p. 142, that the accuracy that may be expected for this determination when using a titrant of such concentration that 1.0 ml \bigcirc 0.50 mg of chloride, is ± 0.05 mg. Thus, using a maximum sample aliquot of 50 ml, the accuracy corresponds to ± 1 ppm. Even for concentrations of 10 ppm or less the results should not be reported to one decimal place.

REPORTED RESULTS: SULFATE (ppm)

	Star	dard S	Sample	No. 1	Stan	dard S	Sample	No. 2
Code No.	(1)	(2)	(3)	Avge.	(1)	(2)	(3)	Avge.
101	61	61		61	13	13		13
102	58	58		58	12	12		12
103	58	60	-	59	12	11		12
104	62	62		62	12	18 <u>a</u> /		12
105	60	60		60	12.2	12.6		12
106	60	60		60	11	11		11
107	60	60		60	13	13		13
108		40						
109	62	62		62	13	13		13
11 0	59	59		59	12	12		12
111	60.3	60.9		61	12	12		12
112	53	53		53	13	13		13
113	60	60		60	12	12		12
114				,			'	$(1,1) \in \mathbb{R}^{n}$
115	60	60	60	60	12	12	12	12
116	59	58		58	12	13	441.1	12
117	60	60	<u> </u>	60	13	14		14
118	56	55		56	11	11		11
119	60	64		62	12	13		12
120	60	60		60	12	12		12
121	60	60		60	13	12		12
122	60	59		60	11	11		11
123	59	61	+ -	60	12	12		12

a/ Not included in calculating average.

Method	used:	Sulfa
--------	-------	-------

Sulfate

Lab.	Method	Modifications
101	Spectrophotometric thorin; WSP 1454, D:38a-2	None
102	do.	do.
103	do.	do.
104	Turbidimetric; Hach color- imeter, sulfaver reagent.	None
105	(None submitted)	이래에 이 것같이
106	Spectrophotometric thorin; WSP 1454, D:38a-2	50 ml of solvent-indicator solution used.
107	do.	None
108	(Not determined)	
109	Spectrophotometric thorin; WSP 1454, D:38a-2	Lumetron colorimeter used; $\lambda = 450 \text{ m}\mu$; Use sufficient sample to obtain 25 ml of effluent from the exchanger; sample al: quot (25 ml max.) containing 3 mg SO ₄ and 25 mg dissolved solids transferred to absorp- tion cell; 125 ml solvent- indicator added; titrate to absorbance of 0.19; blank = 0.60 ml.
110	Visual thorin	Modification of WSP 1454, D:38a-1
111	Spectrophotometric thorin; WSP 1454, D:38a-2	None
112	do.	Titration from absorbance of 0.100 to 0.300; 100-ml. beaker used instead of 50-mm cells.
113	do.	None
114	(Not determined)	
115	(Method not submitted)	
116	Visual thorin; WSP 1454, D:38a-1	ETOH used instead of dioxane; for SO ₄ concentrations of <100 ppm, BaCl ₂ solution (1 ml = 0.20 mg SO ₄) used instead of BaCl ₂ solution (1 ml = 0.50 mg SO ₄).

Method used: Sulfate (continued)

Lab.	Method	Modifications
117	Visual thorin; WSP 1454, D: 38a-1	ETOH used for thorin reagent is denatured with acetone; exchange columns are 18"x1"- diameter tubes containing 10"-column of Amberlite resin flow rate of sample is approx 20 m1/min.
118	do	Lumetron colorimeter; $\lambda = 490$; E.P. at 0.19 absorbance.
119	Gravimetric; WSP 1454, D:38a-3	SiO ₂ not removed; steps 2-4, 6-8, and 10 (WSP 1454, p.284)
120	Spectrophotometric thorin; WSP 454, D:38a-2	Solvent-indicator solution unstable, therefore separate solutions of indicator and solvent are prepared; indica- tor: 1g thorin + 20 g NaOAc per liter (1 ml HCHO added as preservative); solvent: 12 ml HOAc per 1000ml 95% ETOH; 1 ml of indicator + 40 ml solvent added to each sample.
121	Visual thorin; WSP 1454, D:38a-1	40 ml of alc. sol'n of thorin indicator is used in place of steps 5 and 6; indicator solu- tion: 1.3 ml of 0.2% aq. thori added to 1,000 ml ETOH.
122	Spectrophotometric thorin; WSP 1454, D:38a-2	pH adjusted with 1N NaOH and 20% HOAc using bromocresol green; buffer solution not used; 0.5 ml of thorin indi- cator solution (1 mg/ml) and 50 ml of 95% ETOH added to each sample.
23	WSP 54	

		ERRORS	S, SULE	TATE DE	TERM	INAT	ION			
	St	andard						pm		
	ror solute)	eren i. R	Numbe labora repor	tories		P 21	ercen labo repo	ora	tori	of Les
0 ±1 ±2	ppm ''		1 1	2 .4 .9			10 66 90	pe	rcer "	nt
±4	n		2	20			95		11	
±6			2	1			100		n.	

Standard Water Sample No. 2, 12 ppm

Error (absolute)	Number of laboratories reporting	Percentage of 21 laboratories reporting			
0 ppm	13	62 percent			
±1 "	20	95 "			
±2 "	21	100 "			

The reported values for sulfate were good. At the 12 ppm concentration level, 95 percent of the 21 laboratories reported a value which fell within 1 ppm of the calculated value. At the 60 ppm concentration level (Standard Sample No. 1), only 63 percent of the laboratories reported values within 1 ppm of the calculated values. However, 91 percent were within 2 ppm, which, at this concentration level, represents an accuracy of ± 3.4 percent of the amount present.

There is no serious problem with the sulfate determination and there is no significant difference among the several methods used in the analysis of these samples. About one-half of the participating laboratories used the spectrophotometric thorin method, one-fourth the visual thorin method, one a turbidimetric method, and one a gravimetric method. Three laboratories did not indicate the method used.

The results for the determination of sulfate may again indicate a bias in favor of reporting an even-numbered value for the determination.

CONCLUSIONS AND RECOMMENDATIONS

CALCIUM

1. Calcium concentrations over the range of from 16 to 48 ppm can be determined to within 1 ppm.

2. No changes are proposed in methods used or in method of reporting results.

MAGNES IUM

1. Magnesium concentrations greater than 10 ppm can be determined to within 1 ppm.

2. Magnesium concentrations less than 10 ppm cannot be determined to within 0.1 ppm by the present method, and, therefore, should not be reported to the nearest 0.1 ppm.

3. The reliability of the present method for determining magnesium is ± 0.5 ppm, and results should be reported with this notation.

SODIUM

1. Sodium concentrations of the order of 20 ppm can be determined with an accuracy of ± 1 ppm.

2. Sodium concentrations of less than 10 ppm cannot be determined to within 0.1 ppm by the present flame photometric methods, and, therefore should not be reported to the nearest 0.1 ppm.

3. The accuracy of the sodium determination at concentration levels of less than 10 ppm is not better than ± 0.5 ppm, and results should be reported with this notation.

POTASS IUM.

1. The accuracy of the present methods for determining potassium is at best ± 0.5 ppm for concentrations less than 10 ppm, and results should be reported with this notation.

CHLORIDE

1. Chloride concentrations of the order of 20 ppm can be determined to within 1 ppm.

2. Chloride concentrations of less than 10 ppm cannot, by the Mohr method, be determined to within 0.1 ppm.

3. The Mohr method should not be used for samples containing less than 10 ppm of chloride because of the great uncertainty of the result obtained.

4. A mercurimetric (mercuric nitrate) method is being investigated as a superior method for chloride at all concentration levels except extremely low (<1 ppm) concentrations. This procedure will be distributed to all laboratories as soon as its evaluation has been completed.

SULFATE

1. Sulfate concentrations of the order of 12 ppm can be determined to within 1 ppm.

2. The accuracy of the sulfate method at concentration levels of the order of 60 ppm is probably within 2 ppm. However, the precentage error in terms of the amount present is only about 3 percent, which is a reasonable amount.